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Purpose: Effective and accurate segmentation of the aortic valve (AV) from sequenced ultrasound
(US) images remains a technical challenge because of intrinsic factors of ultrasound images that
impact the quality and the continuous changes of shape and position of segmented objects. In this
paper, a novel shape-constraint gradient Chan-Vese (GCV) model is proposed for segmenting the AV
from time serial echocardiography.
Methods: The GCV model is derived by incorporating the energy of the gradient vector flow into a
CV model framework, where the gradient vector energy term is introduced by calculating the devi-
ation angle between the inward normal force of the evolution contour and the gradient vector force.
The flow force enlarges the capture range and enhances the blurred boundaries of objects. This is
achieved by adding a circle-like contour (constructed using the AV structure region as a constraint
shape) as an energy item to the GCV model through the shape comparison function. This shape-
constrained energy can enhance the image constraint force by effectively connecting separate gaps of
the object edge as well as driving the evolution contour to quickly approach the ideal object. Because
of the slight movement of the AV in adjacent frames, the initial constraint shape is defined by users,
with the other constraint shapes being derived from the segmentation results of adjacent sequence
frames after morphological filtering. The AV is segmented from the US images by minimizing the
proposed energy function.
Results: To evaluate the performance of the proposed method, five assessment parameters were used
to compare it with manual delineations performed by radiologists (gold standards). Three hundred
and fifteen images acquired from nine groups were analyzed in the experiment. The area-metric
overlap error rate was 6.89% ± 2.88%, the relative area difference rate 3.94% ± 2.63%, the average
symmetric contour distance 1.08 ± 0.43 mm, the root mean square symmetric contour distance 1.37
± 0.52 mm, and the maximum symmetric contour distance was 3.57 ± 1.72 mm.
Conclusions: Compared with the CV model, as a result of the combination of the gradient vector and
neighborhood shape information, this semiautomatic segmentation method significantly improves the
accuracy and robustness of AV segmentation, making it feasible for improved segmentation of aortic
valves from US images that have fuzzy boundaries. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4876735]
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1. INTRODUCTION

The aortic valve (AV) is a vital passageway inside the heart
that prevents the backward flow of blood as it is pumped from
the left ventricle to the aorta. As a one-way valve, the AV is
open or closed in a regular sequence in a normal heart.1 A re-
cent investigation showed that valvular heart disease (VHD),
including aortic regurgitation and aortic stenosis, is a signifi-

cant threat to human health.2, 3 Aortic regurgitation is caused
by a partially closed AV that induces reflux of blood back
into the left ventricle, while aortic stenosis results from an in-
completely open AV that restricts blood flow into the aorta. In
routine clinical diagnosis, echocardiography is a convenient,
affordable, and noninvasive tool for observing the shape and
movement of the AV. Effective and accurate segmentation of
the AV from echocardiography is the basis and precondition
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TABLE I. AV opens and closes in a cardiac cycle.

Phase Volume Pressure AV Time(s)

Ventricular systole Isovolumic contraction Unchanged ↑↑ Closed 0.06–0.08
Maximum ejection ↓ ↑To max Open 0.11
Reduced ejection ↓ ↓ Open 0.14

Ventricular diastole Isovolumic relaxation Unchanged ↓↓ Closed 0.06–0.08
Rapid filling ↑ ↓To min Closed 0.11

Reduced filling ↑ ↑ Closed 0.19
Auricular systole ↑ ↑ Closed 0.1

to improve the accuracy of intraoperative location in image
guided intervention (IGI) for VHD.4

Automated or semiautomated segmentation is important
clinically to overcome the shortcomings of manual segmen-
tation methods, which suffer from poor repeatability, are
lengthy, with results varying from person to person. There
are three major difficulties in segmenting AV from ultrasound
(US) images. First, the position and shape of AV are changed
in adjacent sequence frames as the AV opens and closes dur-
ing a cardiac cycle (Table I).5 Second, speckle affects the abil-
ity to distinguish details in the image and is the most difficult
problem in segmenting US images.6 Finally, the anisotropy of
US image acquisition, artifacts such as shadow from calcifi-
cation of the leaflets, and attenuation may reduce the quality
of data.7, 8

1.A. Related work

Many automated or semiautomated approaches have been
proposed for cardiac US image segmentation.9, 10 In early
studies, threshold-based methods11–13 were used to segment
either the preprocessed US image or the original US images,
which were mostly based on the analysis of the histogram of
absolute differences. However, the histogram-based segmen-
tation does not achieve very accurate results due to the abnor-
mal distribution of gray levels and a different noise in the US
images. Klingler et al.13 developed a semiautomatic technique
by using the traditional threshold method and mathematical
morphology to segment the endocardium in echocardiograms.

The clustering method14–18 was also applied to segment the
cardiac US images. Ruben et al.15 proposed a fuzzy clustering
method for left ventricular images classification, in which two
attribute criteria (gray level and global information) were em-
ployed to segment ventricles. Shanmugam et al.14 presented a
fast SQL K-Means clustering algorithm to segment the 2D
echo images in apical, four chamber, long-axis and short-
axis views, where Euclidean distance computation is the most
time-consuming process. Because of the poor quality of US
image, the main challenge is how to select suitable classifica-
tion conditions. Usually, this is a complex and difficult pro-
cess, and the classification condition is applicable to a small
number of the images that have specific features.

In recent years, the energy-based active contour model19–36

method that was developed to work with blurred boundaries
has shown promising segmentation results. The basic idea of
the active contour model method is that the evolution con-

tour deforms to the desired segmentation by minimizing the
given energy function. There are two major classes of active
contour models: edge-based models and region-based mod-
els. The edge-based model21–23 is more suitable for segmen-
tation of images having clear boundaries, where the gradient
information of the image is used to stop the evolution contour.
The region-based model24–26 utilizes the global region infor-
mation of the image, and is suitable for segmenting images
with fuzzy boundaries. The key process of this method is to
integrate the proper energy corresponding to the image fea-
tures into the active contour framework. Belaid et al.27 devel-
oped a novel segmentation method of the left ventricle within
the active contour framework, which used a new speed func-
tion based on local phase and local orientation derived from
the monogenic signal to detect boundaries in low contrast re-
gions.

While cardiac US image segmentations is an indispensable
tool in the analysis of cardiovascular disease, the issues relat-
ing to the segmentation of cardiac valves still have not been
well addressed. Most of the reported literature involves the
use of energy-based active contour algorithms. Shang et al.28

proposed a segmentation method for the cardiac valve struc-
ture in US which incorporated preknowledge of the region
and shape into a geodesic active contour to guide the curve
into the ideal contour. Martin et al.29 presented a semiauto-
matic method for segmenting the mitral valve leaflet in trans-
esophageal echocardiography images. However, the leaflets
of the AV have an almost complete change of position and
shape during the opening and closing of the valve during a
cardiac cycle, so it remains a challenge to automatically de-
tect AV contours from sequenced echocardiography images.
In the paper, a fast segmentation algorithm is constructed by
using two constrained active contours and curve fitting tech-
niques. To segment the AV from poor quality US data, this pa-
per presents our research to find the most suitable constraint
energy and to integrate it into active contour framework.

1.B. The motivation for our method

The active contour model has shown promising segmen-
tation results even in the presence of speckle, and custom-
made constraint energies can be conveniently integrated into
the active contour model framework to accurately segment
US images of different tissues and organs. Because the ba-
sic active contour model is less suitable for segmenting short-
axis AV US images, the gradient Chan-Vese (GCV) model is
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constructed to segment AV US images by combining the gra-
dient vector energy30, 31 into the Chan-Vese (CV) model. The
gradient vector energy acts as an effective image force to en-
hance the weak boundaries and also is somewhat effective at
inhibiting overflow at fuzzy boundaries. To solve the difficul-
ties of partial segmentation and overflow, and to reduce clin-
ician workload, the shape information32, 33 of adjacent frames
is incorporated into the GCV model energy functional as
an additional constraint. Improved AV segmentation may be
achieved by minimizing this modified energy functional.

The purpose of this study is to develop a computer-assisted
means of extracting the AV from a US image sequence based
on the GCV model coupled with shape-constraint energy. The
rest of this paper is organized as follows. Section 2 presents
the segmentation method in detail, and Sec. 3 describes the
database and experimental results. The paper concludes with
a discussion of the limitations of the approach and future work
in Sec. 4.

2. METHODS

2.A. GCV model

The GCV model is based on the CV model,25 which is
a flexible and powerful method suitable for segmenting many

types of images, including the region segmentation with weak
boundaries. The model forces the evolution contour C to ap-
proach the boundary of the object by minimizing an energy
function, which is defined by

ECV(C, c1, c2) = v.Area(C) + μ.Length(C)

+λ1

∫
�in|u(x, y) − c1|2dxdy

+λ2

∫
�out|u(x, y) − c2|2dxdy, (1)

where u (x, y) denotes a given image, �in the region inside
the contour C, and �out the region outside the contour C. c1

and c2 are two scalar variables, c1 being the average inten-
sity inside C, and c2 the average intensity outside C. v ≥ 0, μ

≥ 0, λ1 > 0, λ2 > 0 are the positive parameters, whose recom-
mended settings are v = 0, λ1 = λ2 = 1, μ = 0.15 × 2552 to
facilitate the calculation. Here, larger objects are detected by
setting a higher value of μ, and smaller objects are detected
using lower values of μ. Area(C) calculates the area of the
region inside C, and Length(C) the length of C.

Although the CV model demonstrates good performance
for most image segmentation applications, the overflow prob-
lem still exists at fuzzy boundaries in AV US images. As
shown in Fig. 1(a), the AV is difficult to distinguish from

FIG. 1. The difference between traditional potential force field and gradient vector flow field in an AV US image. (a) the original AV US image I(x, y); (b) the
traditional potential force field; (c) the edge map of the traditional potential force field: |∇(Gσ ∗ I )|2; (d) the energy field of the original image; (e) the gradient
vector flow field; (f) the edge map of the gradient vector flow field: |∇g|2.
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other surrounding tissue particularly at the regions indicated
by four arrows. If the image is viewed as an energy field
[Fig. 1(d)], the image forces drive the evolution contour to-
ward the features where the total energy is minimized. The
problem is that the image forces can be almost ignored at the
area indicated by four red arrows, where overflow can be a
problem at fuzzy boundaries when segmentation is employed
using the original CV model.

To overcome the poor convergence problem and limited
capture range, an external gradient vector flow force is pro-
posed to enable the active contour to move into the region
of interest. The gradient vector flow field30, 31 is defined as
g(x, y) = (u(x, y), v(x, y)) that minimizes the energy func-
tional

Egvf (g) =
∫ ∫

η
(
u2

x + u2
y + v2

x + v2
y

)
+|∇f |2|g − ∇f |2dxdy, (2)

where η is a regularization parameter and f(x, y) denotes an
edge map of the original image I(x, y).

Using the calculus of variations,37 the Euler equations are
expressed as

η∇2u − (u − fx)
(
f 2

x + f 2
y

)
= 0; η∇2v − (v − fx)

(
f 2

x + f 2
y

) = 0, (3)

where ∇2 is the Laplacian operator.
Compared with the traditional potential force field

[Figs. 1(b) and 1(c)], the external gradient vector flow force
field [Figs. 1(e) and 1(f)] extends the capture range to the en-
tire image domain by diffusing the forces, where the gradient
vector flow field inhibits the overflow at blurred boundaries
when the AV is segmented from the US image sequence. The
addition of the gradient vector flow energy to the CV model
is described below.

As shown in Fig. 2, the gradient vector flow field forces the
evolution contour to approach the object boundary. When the
evolution contour is outside the object boundary (point A of
Fig. 2), the concave force acts on the evolution contour; when
it is inside this boundary (point B of Fig. 2), the convex force

FIG. 2. The dotted ellipse is the active contour, and the solid contour is the
feature in the image; the dotted arrows indicate the inward normal vector
direction of the evolution contour, and the solid arrows indicate the direction
of gradient vector field; Point A and point B are two points on the evolution
contour.

acts on the evolution contour. Under these circumstances, the
GCV model can be defined as

Egcv(φ, c1, c2)=μ

∫
�δ(φ)|∇φ|dxdy + v

∫
�H (φ)dxdy

+λ1

∫
�|u(x, y) − c1|2H (φ)dxdy + λ2

×
∫

�|u(x, y) − c2|2(1 − H (φ))dxdy

+α

∫
� − sin < n(φ), g > dxdy, (4)

where α is a positive parameter that affects curve evolution
with gradient vector forces; n is the inward normal vector di-
rection of the evolution contour, g is the direction of the gra-
dient vector.

2.B. Setting the predefined shapes

Although the gradient vector flow field extends the capture
range, it is sensitive to noise. To avoid overflows and partial
segmentation, another shape-constraint force acts on the AV
image to ensure accurate segmentation. The important issue
is how to define the constraint shape.

2.B.1. The initial constraint shape

A cardinal spline interpolation38 is used to construct the
initial constraint shape by four successive control points:
Pm−1, Pm, Pm+1, and Pm+2. The endpoints of the segment
curve are Pm and Pm+1, and the other two points Pm+1 and
Pm+2 are employed to calculate the slope at endpoints. Four
constraint conditions are expressed as

P (0) = Pm

P (1) = Pm+1

P ′(0) = s(Pm+1 − Pm−1)

P ′(1) = s(Pm+2 − Pm). (5)

Using the above four constraint conditions, a cubic poly-
nomial segment curve between these two points can be

FIG. 3. Four black user-defined points and the closed cardinal spline curves
of different colors are constructed by different tension parameter s.
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FIG. 4. The rolling ball method: (b) is calculated by the rolling ball operation of (a), where the radius of the spherical structuring element is 20 pixels; the edges
of both (a) and (b) is displayed in (c).

expressed as

P (u) = Pm−1(−su3 + 2su2 − su)

+Pm[(2 − s)u3 + (s − 3)u2 + 1]

+Pm+1[(s − 2)u3 + (3 − 2s)u2 + su]

+Pm+2(su3 − su2), (6)

where s is a tension parameter with effects on the smoothness
of the curve.

As shown in Fig. 3, the user defines four black points along
the AV borders in the US image, where five closed curves with
different colors that pass through four points are produced by
cardinal splines interpolation with different tension parame-
ters. To roughly cover the AV, the tension parameter is varied
from 0.3 to 1.

2.B.2. Additional constraint shapes

During the cardiac cycle, the AV opens and closes con-
tinuously as blood is pumped out of the heart into the aorta.
The movement of the AV changes slightly in a relatively fixed
region between neighboring images. To improve efficiency
and reduce the interaction, constraints apart from the initial
shape can be derived from the segmentation results of adja-
cent frames.

To avoid excessive user interaction, the segmented con-
tour from previous adjacent frame is employed as the con-
straint shape for current frame. A morphological opening
operator,39 using a disk-shaped structure element (the “rolling
ball method”) is used to remove details of the contour. Such
a smoothed contour can be employed more effectively as a
constraint shape.

FIG. 5. The workflow of the general experimental framework.
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FIG. 6. Regions corresponding to the true positive (TP) region, false positive
(FP) region, and the false negative (FN) region.

The application of the rolling ball on the image F(x, y) by
the disk-shaped structuring element B is defined as

R(F,B) = F ◦ B = (F	B) ⊕ B. (7)

As shown in Fig. 4, the rolling ball method can remove the
convex structures and smooth the contours, and is effective in
reducing the impact of slightly different shapes and positions
on the adjacent AV US sequence. In this way, the constraint
shapes are acquired from the segmentation results of adjacent
frames by the rolling ball filter.

2.C. The GCV model with shape constraint

Although the GCV model enhances the weak bound-
aries, overflow at the weak edge of the US image remains.
To solve this problem, it is essential to enlarge the im-
age constraint force for connecting separate gaps of the ob-
ject edge, and the region-based energy constraint is intro-
duced to the GCV model by the shape comparison function:
Eshape(φ). The GCV model with the shape-constraint energy is

defined as

E(φ, c1, c2) = Egcv(φ, c1, c2) + βEshape(φ)

= μ

∫
�δ(φ)|∇φ|dxdy + v

∫
�H (φ)dxdy

+λ1

∫
�|u(x, y) − c1|2H (φ)dxdy

+λ2

∫
�|u(x, y) − c2|2(1 − H (φ))dxdy

+α

∫
� − sin < n(φ), g > dxdy

+β

∫
�(φ − φB)2dxdy, (8)

where α and β are positive parameters that affect curve evo-
lution with gradient vector forces and shape-driven forces, re-
spectively, and φB is the signed distance map of the constraint
shape. The signed distance map is the product of the signed
map and the distance map. In the signed map, the image is
divided into two parts by the constraint shape, where the re-
gion inside the constraint shape is negative and that outside
the constraint shape is positive. The distance map is obtained
by calculating the shortest Euclidean distance from each pixel
on the image to the constraint shape.

The Euler-Lagrange equation can be implemented by the
following gradient descent:

∂φ

∂t
= δ(φ)

[
μdiv

( ∇φ

|∇φ|
)

−v−λ1(u−c1)2+λ2(u−c2)2

]

+α
∇φ · g

|∇φ||g| − 2β(φ − φB) = 0. (9)

FIG. 7. An example [image size: 224 × 272 pixels, coordinate (0,0): the upper left corner] shows the influence of the initialization. In the first row, the closed
curves 1© denote the initial evolution contours (in (a): (x-130)2 + (y-102)2 = 222, in (b): (x-60)2 + (y-170)2 = 452, in (c): (3x-260)2 + (2y-160)2 = 602), and
the closed curves 2© denote the constraint shapes. In the second row, the curves denote the segmentation results.
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FIG. 8. An example (image size: 224 × 272) shows the influence of the initial constraint shape. In the first row, the closed curves 1© show the initial evolution
contours and the closed curves 2© are the constraint shapes. In the second row, the curves denote the segmentation results.

FIG. 9. Analyze the parameter α. In (a) the circle 1© denotes the initial evolution curve, and the circle 2© denotes the constraint shape. In (b) α = 0,
β = 0.1, (c) α = 0.5, β = 0.1, and (d) α = 1.5, β = 0.1, the curve shows the segmentation results.

FIG. 10. Analyze the parameter β. In (a), (b), and (c), the curve 2© is the evolution contour and the curve 1© is the constraint shape, where (a) α = 0.5, β = 0.5;
(b) α = 0.5, β = 0.05; (c) α = 0.5, β = 0.01; (d) the solid line is the AOE of the segmentation result and the constraint shape, and the dotted line is the AOE of
the segmentation result and the manual segmentation result.
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FIG. 11. An example (image size: 636 × 436 pixels; pixel spacing: 0.4336 mm/pixels; iteration step h: 0.01) of the segmentation comparison between the CV
model and the proposed method, where five rows represent five continuous sequence AV US images corresponding to sequence images 1–5 (total 35): (a) gold
standard; (b) segmentation results by CV model; (c) segmentation results by the GCV model (α = 0.5); (d) segmentation results by the shape-constraint CV
model (β = 0.05); (e) segmentation results by the proposed method (α = 0.5, β = 0.05). With the increasing iteration times, both (b) and (c) overflow more and
more seriously. Because the results do not converge, the number of iterations is configured as 55 manually.

The segmentation result is obtained by minimizing the
proposed energy function.

3. EXPERIMENT

3.A. Experiment data and environment

The experiment focuses on the AV short axis view
where the AV B-mode US data are acquired from
http://www.echobyweb.com/index.htm, and the Peking Union

Medical College Hospital, using a Philips Sonos 5500. They
are divided into two categories: one is transthoracic data
with transducer frequency 2.5 MHz that is more blurred (five
groups each with 35 sequences); the other is transesophageal
data with transducer frequency 4.4 MHz with relatively clear
boundaries (four groups each with 35 sequences). To obtain
the sequence of the AV US images, DirectShow and FFD-
Show media decoder are used to convert US video into a
sequence of images with 224 × 256 pixels or 636 × 436
pixels.

Medical Physics, Vol. 41, No. 7, July 2014
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TABLE II. The five evaluation measures of different methods.

Image no Method AOE (%) RAD (%) ASCD (mm) RMSD (mm) MSCD (mm) Iteration times

1 CV model 19.6056 11.8187 2.6154 4.1532 14.3948 55
GCV model 16.1777 10.5529 1.6531 2.1617 7.7471 55

Shape-constraint CV model 8.7339 6.8394 0.5489 0.6895 1.3284 33
Proposed 4.5547 3.9717 0.4282 0.4933 0.8872 35

2 CV model 18.9830 12.9954 2.4265 3.8826 14.6388 55
GCV model 15.9651 11.0983 1.7618 2.4705 7.9354 55

Shape-constraint CV model 9.2311 9.5214 1.3807 1.5744 3.0623 31
Proposed 9.7029 7.8018 1.2311 1.4758 2.9488 32

3 CV model 15.4084 9.2787 1.9827 3.5177 14.2574 55
GCV model 10.9925 7.5782 1.2380 2.0980 10.7201 55

Shape-constraint CV model 11.3818 12.7575 1.3488 1.5493 3.5158 34
Proposed 8.4213 6.1284 1.1055 1.4526 3.0488 36

4 CV model 12.6575 8.7303 1.3860 2.6924 12.3573 55
GCV model 10.0833 7.5960 1.0021 1.5620 6.3977 55

Shape-constraint CV model 12.0899 13.6740 1.5784 1.8803 3.6200 32
Proposed 7.6315 5.3836 0.6864 0.9439 2.8404 33

5 CV model 11.9166 9.7629 1.0447 2.5895 12.2694 55
GCV model 10.1575 8.4180 1.7542 1.5396 6.7567 55

Shape-constraint CV model 13.9524 16.2148 1.6374 2.0972 3.8489 32
Proposed 7.4623 5.8172 0.7048 0.9813 2.6983 34

The proposed mechanisms are implemented on a desktop
PC computer with Pentium R© Dual-Core CPU E5800 @ 3.20
GHz, 2 GB RAM, NVIDIA GeForce GT 430 GPU, with Mat-
lab 7.11.0 and VS2008 on Windows XP.

3.B. Experiment processes

Considering the contextual continuity in the US image se-
quence, the processes of the segmentation scheme are shown
in Fig. 5. The complete experimental framework for the
implementation of the proposed energy-based segmentation
method is summarized by the following steps:

(1) Convert the video into a sequence of images by Direct-
Show and FFDShow media decoder [Fig. 5(a)];

(2) Extract the fan-shaped ROI [Fig. 5(b)];
(3) Calculate the gradient vector field [Fig. 5(e)], where

the GCV model can be constructed by the deviation
angle between the inward normal force of the evolu-
tion contour and gradient vector flow force;

(4) Define the constraint shape that covers the whole
AV region: the initial constraint shape is defined
by a cardinal spline though four user-defined points
[Fig. 5(c)]; the other constraint shapes are derived

from the segmentation result of the adjacent frame
[Fig. 5(g)];

(5) Integrate the shape-constraint energy terms into the
GCV model by a signed distance map [Fig. 5(d)];

(6) Minimize the shape-constrained GCV model to
achieve the AV segmentation results [Fig. 5(f)].

3.C. Evaluation measures

The following five error measures40 are employed to evalu-
ate the quality of the given segmentations, where smaller error
measures represent better segmentation results.

(a) Area-metric overlap error (AOE):

m1 = (1 − Rseg ∩ Rref

Rseg ∪ Rref
) × 100%

= FP + FN

FP + TP + FN
× 100%. (10)

(b) Relative area difference (RAD):

m2 = |Rseg − Rref|
Rref

× 100%. (11)

(c) Average symmetric contour distance (ASCD):

m3 =
∑

a∈A[minb∈B{dist(a, b)}]+ ∑
b∈B[mina∈A{dist(a, b)}]

NA + NB.
(12)

(d) Root mean square symmetric contour distance (RMSD):

m4 =
√∑

a∈A[minb∈B{dist(a, b)}]2+ ∑
b∈B [mina∈A{dist(a, b)}]2

NA + NB.
(13)
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FIG. 12. (a) and (b) show the comparison of the segmentation results using the shape-constraint CV model and the proposed method with the increasing image
numbers (total 35, Image No. 1–5 corresponding five rows in Fig. 11); (c) describes one AV US image (Image No. 5) using the proposed method compared with
the other methods with the increasing iteration times (iteration step h is 0.01).

(e) Maximum symmetric contour distance (MSCD):

m5 = max
{

max
a∈A

{
min
b∈B

{dist(a, b)}
}
,

× max
b∈B

{
min
a∈A

{
dist(a, b)

}}}
. (14)

Among the above five evaluation measures, Rseg and
Rref denote the pixel set of the region by the proposed
method and radiologist, respectively (as shown in
Fig. 6, Rseg = FP + TP, Rref = TP + FN), A and B
denote the edges of Rseg and Rref, respectively, dist(a,
b) denotes the distance between pixel a and pixel b,
and NA and NB denote the total numbers of pixels on
A and B, respectively.

3.D. The initialization and initial constraint shape

A change in the position, size, or shape of the initial con-
tour has little influence on the final segmentation result, since

the shape-constraint energy drive the evolution contour to the
AV region. Figure 7 shows that although the position, size,
and shape of the initial contours are different (note that the
constraint shapes are the same as indicated by the closed
curves 2©), the segmentation results are similar. Under the cir-
cumstances, a circle can be specified as the initial evolution
contour in our experiments.

The repeatability of the proposed method is shown in
Fig. 8, in which the AV is segmented using this method with
different initial manually defined constraint shapes, and where
the segmentation results are almost the same. The AV can be
segmented accurately as long as the manually defined shape
roughly covers the AV region.

3.E. Parameter estimation

It is important to select proper parameters of the model
for better image segmentation. The empirical values of two
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FIG. 13. The segmentation results of the proposed method: (a) No. 31, (b) No. 32, and (c) No. 33.

parameters are determined by a sufficient number of repeat-
able experiments.

One of these is the weight of the gradient vector force α. If
it is too big, the extending capture range of the force field will
add noise, as shown in Fig. 9(d); if it is too small, the shape-
constraint energy has a predominant function on the evolution
contour where the segmentation result may be similar to the
constraint shape [Fig. 9(b)]. As shown in Fig. 9(c), the appro-
priate α drives the evolution contour to the ideal boundary,

where the proper range of variation α is chosen from 0.3 to 1
in our experiment.

Another parameter is the weight of the shape-constraint
β. If it is too large, the segmentation result may simply be-
come the predefined constraint shape [Fig. 10(a)]. Otherwise,
the segmentation result may overflow at the weak edges or
miss part of the AV [Fig. 10(c)] because the shape-driven en-
ergy has less influence on the surface evolution. As shown in
Figs. 10(b) and 10(d), the successful segmentation results are

FIG. 14. The AV segmentation comparisons between our method and the gold standard method, where nine groups correspond to (a)–(i).
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TABLE III. AV segmentation results for each measure are reported as mean and standard deviation over all test images.

No. Image size Pixel spacing (mm/pixel) AOE (%) RAD (%) ASCD (mm) RMSD (mm) MSCD (mm)

(a) 224 × 272 0.4646 5.5970 ± 1.1541 2.4850 ± 1.3202 0.7490 ± 0.1522 0.9690 ± 0.1844 2.3759 ± 0.7361
(b) 636 × 436 0.4336 4.9886 ± 2.0702 2.0331 ± 1.7060 0.6951 ± 0.1625 0.8813 ± 0.1541 1.6853 ± 0.4403
(c) 636 × 436 0.4737 6.0166 ± 1.8814 3.8726 ± 2.8759 1.1504 ± 0.4800 1.6134 ± 0.6330 3.3730 ± 0.8308
(d) 224 × 256 0.5059 9.1806 ± 2.4367 4.5168 ± 1.9936 1.3870 ± 0.3966 1.9206 ± 0.5460 4.9157 ± 1.5578
(e) 636 × 436 0.5326 5.7238 ± 1.3389 3.4328 ± 2.1863 0.7797 ± 0.1262 1.3630 ± 0.4535 3.4812 ± 0.7921
(f) 636 × 436 0.5020 9.5354 ± 3.4956 6.1406 ± 3.2860 1.5762 ± 0.3742 1.7451 ± 0.4643 5.2400 ± 2.2363
(g) 636 × 436 0.4737 5.3684 ± 0.9064 3.5914 ± 1.2591 0.9799 ± 0.3977 0.9639 ± 0.1154 2.1484 ± 0.4006
(h) 636 × 436 0.5326 8.4147 ± 3.7185 4.5850 ± 2.8574 1.1823 ± 0.3552 1.4748 ± 0.2543 4.5857 ± 1.1663
(i) 636 × 436 0.4737 7.2170 ± 2.8168 4.7819 ± 2.9881 1.2117 ± 0.2147 1.4419 ± 0.3810 4.3110 ± 1.4708
Total 6.8936 ± 2.8839 3.9377 ± 2.6316 1.0790 ± 0.4260 1.3748 ± 0.5220 3.5685 ± 1.7159

acquired by setting the appropriate parameter, where the opti-
mum range of β is between 0.02 and 0.2.

3.F. The comparison of segmentation results among
different methods

Below we provide a detailed comparison of the shape-
constrained GCV model with other methods.

As the position and shape of AV are changed slightly in
adjacent images that have a strong time correlation, the seg-
mentation result of the adjacent image is used to reduce the
user interactions and improve the efficiency. Here, the con-
straint shape of the first image is constructed by the cardinal
spline that passes through four user-defined points, and the
other four constraint shapes are constructed from the previous
image. The segmentation result can be calculated by minimiz-
ing the GCV model with shape-constrained energy.

As shown in Fig. 11, the serious overflow occurs at weak
boundaries when the CV model is employed [Fig. 11(b)].
Although the overflow is suppressed by the GCV model
[Fig. 11(c)] the overflow still occurs. In Fig. 11(d), the shape
constraint prevents any overflow in the CV model, but the un-
der segmentation error accumulates with the increasing num-

ber of processed sequence images. The gradient vector energy
enlarges the capture range of the external force, allowing the
evolution contour to better access the details instead of los-
ing them by using shape-constraint CV model. The segmen-
tation results of the proposed method [Fig. 11(e)] achieved
the best correlation to the gold standard [Fig. 11(a)]; Conse-
quently, the dual role of both the gradient vector and shape-
constrained energies that enhance the image weak edge force,
cause the evolution contour to approach that of the target more
accurately. Five error measures are employed to evaluate the
accuracy of the segmentation results as shown in Table II.

Figure 12 explains why both the shape constraint and the
gradient vector energy need to be added to the CV model.

With the increasing iteration times (iteration times > 60)
[Fig. 12(c)], the AOE of the CV model increases rapidly, be-
cause it seriously overflows at weak boundaries. The AOE
of the GCV model increases slowly where the overflow rate
is slowing down, where the AOE of the shape-constraint CV
model and the proposed method tend to be steady, although
the AOE of the shape-constraint CV model is bigger than the
proposed method. Since the shape-constraint energy acts on
the evolution contour, there is no overflow and the number of
iterations is significantly reduced.

FIG. 15. The distribution map of evaluation parameters between the proposed segmentation results and the gold standards. Each point (total 315) shows the
number of images with the specified range. (a) represents the distribution map of AOE and RAD; (b) shows the distribution map of ASCD, RMSD, and MSCD.
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Then we describe these two convergent methods, i.e., the
shape-constraint CV model and the proposed method in more
detail. As shown in Figs. 12(a) and 12(b), segmentations
using these two methods (on a group with 35 image se-
quence) are evaluated by five measures. With the increasing
image numbers, there are growing values of error measures
by using the shape-constraint CV model, but stable ranges
by using the proposed method. The gradient vector energy
eliminates the accumulation of errors, where it allows the
evolution contour better access to the details and overcome
the problem of loss of detail using the shape-constraint CV
model.

Among the 35 image sequences from No. 31 to No. 33,
the largest change in AV shapes occurred during one beating
circle when the AV is opening (Fig. 13), where the proposed
approach can eventually resolve the situation properly.

3.G. Assessment of segmentation results

As shown in Fig. 14, nine groups of data, each with 35
image sequences were segmented using the proposed method
and by an expert. Five errors were measured to evaluate our
segmented results, where the accuracy varied on the quality of
the data. Table III (a)–(i) represents the evaluation measures
of the nine groups in Figs. 14(a)–14(i), respectively.

With the increasing abscissa values, the number of im-
ages tends to zero [Figs. 15(a) and 15(b)]. These experi-
ments demonstrate that the proposed method is feasible to
help physicians during image-guided cardiac interventions.

4. CONCLUSIONS

In this paper, a novel energy-based active contour ap-
proach, the shape-constraint GCV model, has been proposed
for segmenting the AV from sequenced US images. A major
contribution of this paper is that it provides an accurate and
robust AV US image segmentation method which is the adap-
tation of the CV model combining with both gradient vector
energy and a shape-driven energy. The gradient vector energy
is added into the CV model to form the GCV model frame-
work by calculating the deviation angle between the inward
normal force of the evolution contour and the gradient vec-
tor flow force. The gradient vector energy enhances the weak
boundary as the gradient vector external force field extends
the capture range to the whole image domain by diffusing
the forces. The shape-constraint energy is integrated to the
GCV model by a shape comparison function to force the ac-
tive contour into an ideal contour. In this way, the AV can
be segmented from US images accurately and robustly. The
other contribution of this paper is that the proposed method
improves efficiency and reduces the workload of physicians.
The radiologist only needs to define four points in the AV re-
gion to acquire a sequence of AV segmentation results, where
the initial constraint shape is constructed by four manually de-
fined points, and other constraint shapes can be obtained from
calculating the segmented results of the adjacent US frame by
morphology filtering.

Compared with the traditional CV model, the proposed
shape-constrained GCV method can segment the AV more
efficiently and accurately. For validation, we compared the
performance of our approach against the gold standard, us-
ing data from nine patients, each having 35 AV US images,
and demonstrated that out method can segment the AV ef-
fectively. We believe the shape-constraint GCV approach can
play an important role in image guided TAVI intervention41

and computer-aided diagnoses of cardiac disease.
Our future work will generally concern on two directions:

one is how to pursue real-time performance using substantial
clinical data, another is how to accurately and effectively track
the AV contour from the poorer US images.
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